
A Gleaming Tree
Implementing decision trees in the Gleam compiler

by

Harm van Stekelenburg

Student number: 852343871
Course code: IB9902
Thesis committee: Supervisor: dr. Tim Steenvoorden, Open University

Second assessor: dr. Freek Verbeek, Open University

CONTENTS

1 Gleam, decision trees and optimization 4
1.1 Introduction . 4
1.2 Contributions . 4
1.3 Structure . 5
1.4 Related work . 5

2 Decision trees 6
2.1 Pattern matching . 7
2.2 Clause matrices . 7
2.3 Decision trees . 8
2.4 Generating decision trees . 8
2.5 Optimizing decision trees . 10
2.6 Sharing sub trees . 12

3 Gleam and its compiler 13
3.1 Gleam . 13
3.2 Compilers . 16

3.2.1 Abstract syntax trees . 17
3.2.2 Specifying ASTs . 19

4 Implementing decision trees in the Gleam compiler 21
4.1 Transforming the Abstract Syntax Tree . 21
4.2 Translating decision trees to JavaScript . 23

4.2.1 Generating JavaScript output . 23
4.2.2 Deduplicating decision trees . 24

5 Performance of decision trees for Gleam 27
5.1 Balancing Red-black trees . 28
5.2 Sorting with bubble sort . 28

6 Conclusions 31
6.1 Discussion . 31
6.2 Future work. 32

A Balancing red-black trees code 34

B Bubble sort code 36

C Excluding Erlang 38

1

ACRONYMS

AST Abstract Syntax Tree. 1, 4, 16–21, 23

GHC Glasgow Haskell Compiler. 5

IR Intermediate Representation. 18

2

ABSTRACT

Gleam is a functional language that uses pattern matches for control flow. It can be com
piled to Erlang and JavaScript. Gleam is designed to be a small and predictable language so
a premium is placed on generating readable JavaScript and Erlang that closely matches the
Gleam code after compilation [The Gleam team 2024].

Decision trees are a way of representing pattern matches inside a compiler. Allowing
the compiler to find an efficient tree to determine the result of a pattern match at runtime.
Using decision trees can improve the performance of programs that are compiled with de-
cision trees [Maranget 2008]. If using decision trees in the Gleam compiler would signifi-
cantly improve the performance of Gleam pattern matches after compilation, the decrease
in readability of the produced code could be justified.

In this thesis we implement decision trees in Gleam, for a limited set of patterns. Using
that implementation we compare the performance and size of code generated using deci-
sion trees, using two test cases. A program balancing red black trees and a program using
bubble sort to sort a list. Based on the performance measurements we conclude that the
performance of produced JavaScript code does not improve, and can even worsen. The
produced code has a greater size than the standard Gleam compiler would produce. With
these measurements we show that implementing decision trees in the Gleam compiler can-
not be justified because of an increase in performance

3

1
GLEAM, DECISION TREES AND

OPTIMIZATION

1.1. INTRODUCTION
Gleam, as a functional language, uses pattern matching for control flow. Its compiler can
generate Erlang and JavaScript code. There are few optimizations applied when generating
this output code. The Gleam compiler translates pattern matches to straight-forward if-
else statements in JavaScript. It could be there are ways to compile to faster JavaScript
code. One compiler technique to increase the performance of compiled pattern matches
is decision trees.

Decision trees are a way to evaluate each value that can match a pattern only once.
Finding the optimal decision tree is not trivial: it is not a decidable problem. There are
multiple heuristics for finding trees that are (close to) optimal. Directly transforming deci-
sion trees to output code can result in very large output sizes. So decision trees are often
combined with a way to merge identical parts of the decision tree [Maranget 2008].

When looking at decision trees in the Gleam compiler we will limit ourselves to a small
number of patterns, just enough to get an impression of the impact of decision trees. We
will only target JavaScript as an output target. Erlang has its own pattern matching op-
timizations. To combine Gleam and decision trees we formulate our research question:
What is the impact of implementing decision trees in the Gleam compiler on the performance
and size of generated JavaScript code?

1.2. CONTRIBUTIONS
To see the impact of implementing decision trees in the Gleam compiler we implement
them in the compiler. We describe how Gleam’s Abstract Syntax Tree (AST) is translated into
JavaScript code both directly, with duplicated output, and indirectly, without duplicated
output. We implement two different heuristics: fdb and qba.

We measure the size of the generated JavaScript code and compare the performance
using two Gleam programs: balancing red-black trees and sorting lists using bubble sort.
We see that the output size increases and the performance does not improve. We present
the conclusion that decision trees are a bad fit for the Gleam compiler since they do not
significantly improve the performance of generated JavaScript code but do increase its size.

4

We discuss possible reasons why the performance does not improve but have no definite
conclusions why this is the case.

1.3. STRUCTURE
To answer the research question we first need some background. Decision trees are intro-
duced in Chapter 2. A short introduction to Gleam is given in Chapter 3. After introducing
Gleam, we also will provide some general background on compilers and specific details of
the Gleam compiler in Chapter 3.

With this background we explain our implementation of decision trees in the Gleam
compiler in Chapter 4. In Chapter 5 we measure the size of the generated JavaScript code
and the performance of using decision trees in the Gleam compiler. Finally in Chapter 6 we
answer the research question and discuss what the measurements from Chapter 5 mean.

1.4. RELATED WORK
Our research is based on the decision trees as described by Maranget [2008], they use this to
optimize pattern matching in OCaml and test the performance of different heuristics. They
show decision trees can increase the performance compared to the previous optimizations
using backtracking automata and so implement decision trees in the OCaml compiler.

Decision trees are further build on by Baudon, Gonnord, and Radanne [2022]. They
provide a different algorithm for creating trees, that allows for different memory represen-
tations of values and provide for more dynamic values as just constructors. This work could
allow languages like Rust to apply optimized pattern matches. They mention two main op-
tions besides heuristics for selecting columns from a clause matrix: backtracking automata
(a kind of depth first search) and minikanren based search (a kind of breadth first search).
Without using different memory representations this thesis uses their algorithm to gener-
ate decision trees.

The Glasgow Haskell Compiler (GHC), a Haskell compiler, does pattern match opti-
mizations as well but does it in a series of transformations. One example of a transfor-
mation is the case-of-known-constructor transformation that removes checks of patterns
where it is already known which constructor it will be at compile time and so simplifies the
transformed code. Another transformation is case-elimination removing cases that can be
shown to be redundant [Peyton Jones and Santos 1998; Medeiros Santos 1995]. This se-
ries of transformations approach makes it hard for us to compare GHCs pattern matching
optimizations to techniques like decision trees or backtracking automata.

Pattern matches in Erlang are also optimized (see Appendix C) but Erlang does not
check for exhaustiveness in pattern matches. So implementing decision trees in Erlangs
compiler would need extra functionality compared to decision trees as implemented in
this thesis to handle match failures.

5

2
DECISION TREES

When compiling pattern matches there are many ways to structure the resulting (machine)
code. In Listing 2.1 we see some code where we introduce a Color type that can be either
a Red or Black variant. We then introduce a function t that uses a pattern match on three
Colors and returns a number based on which pattern the Colors match.

The code of Listing 2.1 could be translated into the pseudocode of Listing 2.2. There we
see z is evaluated thrice. The advantage of decision trees is that, when they are optimal,
they allow each variable (or when a variable is composed of subterms each subterm) to be
tested only once.

In this section we introduce introduce pattern matching, clause matrices (a concept
used to transform pattern matches into decision trees), decision trees themselves, how to
generate decision trees and ways to optimize decision trees so each subject will be tested
only once. Finally we will show techniques for reducing the resulting (machine) code. All
information on decision trees and examples used are based on [Maranget 2008] and the
refinements of [Baudon, Gonnord, and Radanne 2022].

pub type Color {
Red
Black

}

pub fn t(x: Color,y: Color,z: Color) {
case x, y, z {

_, Red, Black -> 1
Red, Black, _ -> 2
_, _, Red -> 3
_, _, Black -> 4

}
}

Listing 2.1: Gleam example pattern match

6

let t x y z =
if y == Red

if z == Black
return 1

if x == Red
if y == Black

return 2
if z == Red

return 3
if z == Black

return 4

Listing 2.2: Naive translation of pseudocode

2.1. PATTERN MATCHING
We provide an explanation of pattern matching. A pattern match consists of several parts:

Subjects are the variables or expressions that the patterns in the pattern match will be
matched against.

Patterns are what the subjects are matched against. What patterns can be depends on
the type of the subject. If the subject is an algebraic data type the pattern could be
a variant of that type. If the subject is an integer the pattern could be 1 for example.
Alternative patterns are when a subject is matched against multiple patterns and if
any on of the matches the match succeeds. When an integer is matched against 1 or
2 to match this is written as 1 | 2.

Wildcards are a subtype of pattern that will match any value the subject has.

Clauses are a collection of patterns that together provide a pattern per subject.

Actions are the results that will occur when all patterns in a clause match.

It is important to note only one action will ever result from a pattern match. This will be
the first clause, from the top, that matches the values of the subjects. Even if more clauses
would match. Pattern matching is exhaustive when for any values the subjects can have a
clause will always match. Compilers can guarantee this and the Gleam compiler guarantees
the exhaustiveness of all pattern matches.

An example of a pattern match, taken from [Maranget 2008] with minor changes, is
Listing 2.1. It shows three subjects: x, y and z. The patterns used are either wild cards
(written as "_") or one of the two variants of Color. There are four clauses, so there are
four associated actions: the pattern match will result in an integer between 1 and 4. It is
exhaustive, else it would fail to compile.

2.2. CLAUSE MATRICES
Recall the goal of decision trees is to allow us to test each subject only once. Pattern matches
can be turned into decision trees more easily if we represent them as matrices. This allows

7

x y z Action

_ Red Black 1
Red Black _ 2

_ _ Red 3
_ _ Black 4

Table 2.1: Clause matrix for the pattern match in Listing 2.1

us to use columns of patterns when deciding when to test a subject. One way of repre-
senting pattern matches as tables are clause matrices. Clause matrices have a column per
subject and a special column for actions. Each clause and its associated action will result in
a row of patterns and one action in the matrix. An example is Table 2.1: one row per clause
in the original pattern match. One column per discriminant and a special column for the
actions.

2.3. DECISION TREES
Like all trees decision trees consist of nodes and edges. There are several kinds of nodes:

Unreachable nodes are leaf nodes. They indicate that the pattern match does not cover
the path that ends up in this node. When the tree is based on an exhaustive pattern
match this will never happen at runtime.

Action nodes are the other kind of leaf nodes in decision trees. They indicate the action to
take if a path in the tree ends up in this type of node.

Switch nodes identify which subject, or which subterm of a subject, will be tested. This
can also be seen as which column in a clause matrix is picked, since each column
identifies a subject.

Or nodes are ignored in this thesis. They are sometimes used to create clearer trees when
alternative patterns are used in a clause.

Edges specify cases: what path to take depending on the value of the tested subject. In
the code from Listing 2.1 the possible cases for a Color subject would be Black, Red, or a
default case. Default cases indicate what path to take if no other case matches the subjects’
value. For an example of a decision tree based on the pseudocode in Listing 2.2 see Figure
2.1. Note how on the path from the root to 2 y is tested twice. We can do better. Section 2.6
will explain why this is a graph and not strictly a tree.

When evaluating a pattern match we walk through the tree based on the subject, or one
of its subterms, as indicated by the nodes and edges. Ending up with an action in one of
the leave nodes.

2.4. GENERATING DECISION TREES
The algorithm that creates decision tree takes as an input a clause matrix and emits nodes
and their children. It is a recursive algorithm. When recurring the algorithm will generate
modified clause matrices.

We use matrix P as an input for the algorithm:

8

y

z 1

x

y 2

z

3

4

Red

Black

Default Red

Black

Default
Red

Black

Default

Default

Figure 2.1: Decision tree based on Listing 2.2

1. If P has no rows emit a Unreachable node.

2. If the patterns of the first row consists only of wild cards emit a Succes node with the
action of that row.

3. If rows contain alternative patterns (like Red | Black), add a row for each pattern in
place of the original row with just that pattern in the matrix and continue.

4. Construct a Switch node.

Constructing a Switch note is done in several steps:

1. Select a column, i , of the clause matrix to start from. How to select a column is ex-
plained in section 2.5.

2. Determine needed cases. Every non-wild card pattern in the column contributes a
case, unless it would be a duplicate. If the cases do not cover every value sub j ecti

can have, a default case is added.

3. For each case build a decision tree based on a modified clause matrix. How to modify
the matrix is explained below.

4. Construct the switch node by specify which subject is checked in the node and add a
sub tree per case, labeling the edge with the case and using the tree build for it in the
previous step.

Modifying a clause matrix based on a case is done in two operations:

Specialization is the first operation. It removes all rows where the pattern in the chosen
column i does not match the case. For example if the case is the Red variant of Color
all rows with Black in position i would be removed. Wild card patterns are kept. For
the default case only rows with wild card patterns in position i are kept.

9

y z Action

Black _ 2

y z Action

Red Black 1
_ Red 3
_ Black 4

Table 2.2: Clause matrix for the Red and default case

x

..

..

Red

Default

Figure 2.2: Root of the decision tree based on Table 2.1 when picking column 1

Expansion is the second operation. It replaces the subject of column i with its subterms
and replaces the patterns in position i with their subpatterns. If there are no sub-
terms or the default case is used the entire column is removed. For example if the
tuple x is the subject, Tuple is the case and the pattern is #(Red, Black) (This is
how a tuple is written in Gleam). The new subjects would be x.0 and x.1 and the
new patterns would be Red and Black. Making all the rows in the new matrix one
pattern longer.

In, for example, Table 2.1 we see there are rows, the first row is not only wild cards and
there aren’t any alternative patterns so we have to construct a switch node. We select the
first column. The only pattern we see is Red so we add Red to the cases. This is not all the
values subject x can have so we add a default case. That means we need two new matrices:
see Table 2.2. Resulting in the partial tree in Figure 2.2.

2.5. OPTIMIZING DECISION TREES
The goal of decision trees is to produce code based on pattern matches where each subject
is evaluated once. Depending on what column is picked in the algorithm from Section2.4
different trees are generated. Generating all the trees and selecting the most optimal one
could be extremely burdensome for the compiler. That is why we use heuristics to select a
column.

Each heuristic assigns a score to a column. The column with the highest score is picked
each time. When composing heuristics any ties produced by the first heuristic are broken
by the second heuristic and so on. Some example heuristics are:

First row or f. This heuristic only looks at the first row of the clause matrix. If position i in
the first row is a wildcard pattern then column i scores zero, else it scores one.

In our example in Table 2.1 column one would get a score of 0 and the other two
columns get a score of 1.

Small default or d. Scores a column by counting the wild card patterns in a column and
negating that count as the score. So the fewer wild cards in a column the higher score
it gets.

10

z

y

3

x

2

3

y

1

x

2

4

Red

Red

Black Red

Black

Black

Red

Black Red

Black

Figure 2.3: Decision tree generated using the fdb heuristic based on Listing 2.1

In our example in Table 2.1 column one would get a score of -3, column two gets a
score of -2 and column three gets a score of -1.

Small branching factor or b. This heuristic counts the number of cases that the patterns
in the column create and negates that count. The count is increased by one if the
patterns in the column are not exhaustive i.e. there is a default case.

In our example in Table 2.1 each column would get a score of -2. If Color would have
had three constructors the first column would keep its score of -2 and the other two
columns would get a score of -3.

Arity or a. This heuristic is the negation of the sum of the arities of the set of constructors
present in the patterns in the column. This means columns that will produce less
columns in subsequent clause matrices are preferred, since each sub expression in a
constructor will create a new column when transforming the matrix.

In our example in Table 2.1 all columns would get a score of 0 since both the Red and
Black constructors have zero arguments.

Constructor prefix or q. This heuristic scores a column by counting the number of con-
secutive non-wild card patterns in a column. The idea being that earlier clauses in
a pattern match will have a bigger impact since the first match is the one that will
provide the action.

In our example in Table 2.1 column one would get a score of 0, column two a score of
2 and column three a score of 1.

fdb is considered a serviceable composition of heuristics to use, with qba being considered
slightly better but somewhat more difficult to implement [Maranget 2008].

Using our example of 2.1 fdb generates the tree of Figure 2.3 we see there is no path in
the tree where a subject is tested more than once.

11

2.6. SHARING SUB TREES
In Figure 2.1 we saw a decision tree that was not a tree but a graph. The procedure for
generating trees as explained in Section 2.4 can generate trees with duplicated sub-trees. If
we directly translate the generated trees to (machine) code this will lead to repeated code.
When comparing code compiled with decision trees versus code compiled with different
techniques measuring the output size is an important metric besides just the raw perfor-
mance. When decision trees are compiled there are multiple techniques for deduplication
one example is hash-consing. Like we will see in Section 4.2 in this thesis we will use a hash
map to keep track of duplicated subtrees.

12

3
GLEAM AND ITS COMPILER

In this chapter we present a short description of Gleam and some of its notable features.
We also need an understanding of compilers so we know how and where to implement
decision trees. A high level overview of compilers will be the second section of this chapter.

Figure 3.1: Lucy: the mascot of Gleam

3.1. GLEAM
Gleam is a modern functional programming language designed for building reliable and
scalable systems. Gleam has a fairly minimal syntax and aims to keep that syntax modern
and familiar. Gleam does not have features such as type classes or currying. Gleam can
generate code for both JavaScript and Erlang runtimes. Gleam emerged in 2019, and since
then, releasing its 1.0 version on March 4th 2024. The language is actively developed [The
Gleam team 2024]. Some examples to showcase the essence of Gleam. They are all based
on Gleam contributors [2024].

Immutable Data The values assigned through an expression or statement are immutable,
meaning the value contained in a variable cannot be changed. Same goes for lists,
when trying to append an item to a list, the original list will not be mutated. Instead
a new list will be created with the new item appended to it.

In Listing 3.1, when a Cat instance is created using the create function with the name
"John" and a cuteness level of 5, the resulting cat instance is immutable. Subse-
quently, when the increase_cuteness function is called with cat as an argument, it
returns a new Cat instance with the cuteness level incremented by 1. However, the
original cat instance remains unchanged, showcasing immutability in Gleam.

13

pub type Cat {
Cat(name: String, cuteness: Int)

}

pub fn create(name: String, cuteness: Int) -> Cat {
Cat(name: name, cuteness: cuteness)

}

pub fn increase_cuteness(cat: Cat) -> Cat {
Cat(name: cat.name, cuteness: cat.cuteness + 1)

}

pub fn main() {
let cat = create("John", 5);
// => Cat(name: "John", cuteness: 5)
let res = increase_cuteness(cat);
// => Cat(name: "John", cuteness: 6)
// cat is still: Cat(name: "John", cuteness: 5)

}

Listing 3.1: Gleam immutability

Pattern Matching Pattern matching is a Gleam feature for destructuring values and con-
trol flow. This is a necessary pre-condition for usable algebraic datatypes, for exam-
ple where the return value of a function can be a result or an error, which are ex-
pressed together in a single return type. An example of destructuring lists is seen in
3.2. Lists can be destructured into a head, the first element, and tail, a list containing
all other elements.

describeList xs = case xs of
[] -> "This list is empty"
[a] -> "This list has 1 element"
[a, b] -> "This list has 2 elements"
[head, ..tail] -> "This list has more than 2 elements, \
\ and 'tail' contains all but the first"

Listing 3.2: Gleam pattern matching destructuring

Gleam uses pattern matching for all control flow. In the first pattern in Listing 3.3
we see the only place ifs can appear in Gleam, this is called a guard and allows for
boolean checks that are hard to represent in patterns. The underscore is used to rep-
resent a wildcard, a pattern that will match any value. Patterns are evaluated top-
down and the first match determines the result of a pattern match.

14

fn greet(id: Result(Int, String)) {
case id {

Ok(x) if x < 0 -> "Hello negative stranger!"
Ok(0) -> "Hello, Alice!"
Ok(1) -> "Hey there, Bob!"
Error(error) -> string.concat(["Uh looks like a problem: ", error])
_ -> "Hello, stranger!"

}
}

Listing 3.3: Gleam pattern matching

Function Composition A great asset of functional languages is the construction of more
complex functions from simpler one, see Listing 3.4.

fn double(x) {
x * 2

}

fn square(x) {
x * x

}

fn double_then_square(x) {
square(double(x))

}

Listing 3.4: Gleam function composition

Gleam contains a bit of syntactic sugar to compose functions more elegantly: pipelines.
The first argument to a function in a pipeline is always the result of the previous func-
tion or value. The code in Listing 3.5 is equivalent to the code in Listing 3.4

fn double_then_square(x) {
x
|> double
|> square

}

Listing 3.5: Gleam pipelines

Type safety Gleam is a type-safe language, meaning the compiler enforces strict adher-
ence to data types. Variables, functions, and expressions will only operate on values
that are of the appropriate type. This strong typing can be inferred by the compiler,
without the need of explicit type annotation. In the following example a and b must
be of the same type in order to use the + operator, since it is only defined when the
operators are both integers. If we wanted to add two floats we would need to use +..

15

fn add(a, b) {
a + b

}

Listing 3.6: Gleam type inference

Gleam users can define their own types, as seen with the Cat type in Listing 3.1.

Multiple compiler targets Gleam compiles to BEAM byte code or JavaScript. This means
the language is quite portable, with a standard library that is provided for all targets.
It provides interoperability with the ecosystem of libraries of the final runtime with
the @external annotation.

@external(erlang, "rand", "uniform")
pub fn random_float() -> Float

@external(javascript, "./my-handwritten-module.js", "run")
pub fn run() -> Int

Listing 3.7: Gleam external function

3.2. COMPILERS

To implement decision trees we need to modify the Gleam compiler. A compiler is a piece of
software that takes source code and transforms it into a new output format, often machine
code for a specific machine. Currently the Gleam compiler, written in Rust, has two output
formats, one is JavaScript code and the other is Erlang bytecode (.beam files: run by the
BEAM virtual machine).

A compiler can consist of several different parts, often a backend and a frontend. Where
the end product of a compiler frontend is an Abstract Syntax Tree (AST), or syntax tree,
the backend transforms this AST and outputs some target-machine code from the source
code [Aho et al. 2007]. More extensive subdivisions can be made, see Figure 3.2. All these
different phases together are known as a compiler pipeline.

The Gleam compiler does not implement all these phases. It transforms a character
stream into a token stream, creates a syntax tree based on that, then transforms this syntax
tree into a tree where type information is incorporated and finally that tree is transformed
into either Erlang or JavaScript code.

16

Lexical analyzer

character stream

Syntax analyzer

token stream

Semantic analyzer

syntax tree

Intermediate Code generator

syntax tree

Machine-Independent Code Optimizer

intermediate representation

Code Generator

intermediate representation

Machine-Dependent Code Optimizer

target-machine code

target-machine code

Symbol table

Figure 3.2: Compiler phases [Aho et al. 2007, p. 5]

3.2.1. ABSTRACT SYNTAX TREES

To implement decision trees in the Gleam compiler we need to transform the AST in the
Gleam compiler. An AST is a representation of the source code as a tree, and is the end
product of the syntactic and semantic analysis phases in the compiler, see Figure 3.2. A
very simple example would be transforming 1+2*3 into a tree like in Figure 3.3.

17

*

+

1 2

3

Figure 3.3: An example Abstract Syntax Tree

Compilers generate an AST to have a representation of the source code in a form that
closely matches the grammar, or syntax, of the source code [Nystrom 2021, p. 65]. Let’s look
again at the example of 1+2*3, a syntax tree abstracts over trivial differences like whites-
pace: 1 + 2 * 3 will have the same tree difference. When implementing new features in a
compiler working with ASTs allows us to ignore these trivial differences.

ASTs also encode the semantics of the language, it allows 1+2*3 to be represented with
the correct precedence rules for doing addition and multiplication: 1+(2*3). So syntax
trees allow us to abstract over the concrete representation of the source code and more
directly represent the syntactic or semantic meaning of the source code. The compiler is
not limited to a number of transformations, in the running example all nodes from Figure
3.3 could be transformed by the compiler to a single node: 7.

Other uses of ASTs are that they allow for semantic analysis, including type analysis
[Aho et al. 2007, p. 8-9]. Type analysis is an important part of semantic analysis in the
Gleam compiler, since Gleam is a typed language. Symbol tables act in concert with ASTs
but provide enriching information. The table can keep track of such things as the the type,
value or location of a constant and keeping that information connected to its identifier in
the source code [Aho et al. 2007, p.85-86]. There is no explicit symbol table in the Gleam
compiler, type information is contained within an AST.

All of this makes ASTs a form of Intermediate Representation (IR). In the context of this
thesis this means we can pin down the goal of the resulting artifact as a translation of one
type of IR to another; the already existing AST in the Gleam compiler to another tree that
includes a representation of decision trees. Then a lightly modified backend can generate
the resulting JavaScript code. See Figure 3.4

18

Lexical analyzer

character stream

Syntax analyzer

token stream

Semantic analyzer

syntax tree

Decision tree generator

syntax tree with type information

New

Code Generator

syntax tree with decision trees

Modified

JavaScript or Erlang source files

Figure 3.4: Compiler phases in the Gleam compiler. Changes to implement decision trees are indicated.

3.2.2. SPECIFYING ASTS

To describe the implementation of decision trees in the Gleam compiler we need a way to
describe possible ASTs, so we can design an AST with decision trees and then implement it
in the Gleam compiler. This grammar is a formal grammar. An example is seen in Listing
3.8 Formal grammars show how possible expressions (on the left hand side) can be formed
by combining other expressions or terminals. Terminals are expressions that need no other
expressions to be created. Listing 3.8 shows what the grammar for a language that allows
adding and multiplying integers, like in our running example, could look like.

We introduce some special notation for use of grammars. Text on the left of a ::= spec-
ifies an an expression. The right hand side explains how that expression is formed. Alter-
natives of forming an expression are specified by using |. When there are many (or exten-
sive) alternatives these often printed on separate lines. Expressions printed in italic require
other expressions to be constructed. These other values and their names are specified be-
tween parentheses, they provide some clarity as to why expressions need other expressions
to be constructed. They closely match the way expressions are implemented in the Gleam
compiler: namely as fields of structs or enums in the Rust programming language. A + af-
ter an expression means one or more repetitions of that expression, * means zero or more.
1+2*3 is represented in this grammar as:
Calculation (op: Plus, left_hand_side: One, right_hand_side:
Calculation (op: Multiply, left_hand_side: Two, right_hand_side:

19

Three)).
If we want to implement decision trees in the Gleam compiler we can use a grammar to

describe the transformation of one AST to another as we will see in the next chapter.

Calculation ::= Integer
| Calculation (op: Operator ,

left_hand_side: Calculation ,
right_hand_side: Integer)

Integer ::= Integer (value: Digit +)

Operator ::= Plus | Multiply

Digit ::= One | Two | Three

Listing 3.8: A basic grammar

20

4
IMPLEMENTING DECISION TREES IN THE

GLEAM COMPILER

Decision trees are a way to speed up compiled pattern matches, see Chapter 2 for details.
To implement decision trees in the Gleam compiler we need to modify its compiler. The
compiler takes the Gleam code and produces JavaScript or Erlang code, as seen in Section
3.2. In this chapter only the JavaScript output is discussed. For why only JavaScript is con-
sidered see Section C

We make two changes to the compiler, the first is a transformation of the AST to an-
other AST that contains representations of decision trees. We provide the grammar for
this new tree. The second change is a modification of the compilers backend to output
the modified AST as JavaScript. We extend this second modification to generate dedupli-
cated decision trees, this reduces outputted code size because each unique decision sub-
tree is only translated into JavaScript once. The implementation can be found on github:
https://github.com/Harmful-Alchemist/gleam/tree/decision_trees_dedup.

4.1. TRANSFORMING THE ABSTRACT SYNTAX TREE

The grammar for pattern matches in Gleam, as found in its compiler, is shown in Listing
4.1. For the notation used see Section 3.2.2. Each expression represented in this grammar
is expressed as a enum variant in the Rust compiler code. In this thesis we only look at
discard, variable, constructor and list patterns from this grammar. This is enough to get a
first impression of the performance of decision trees within Gleam. We leave other types of
patterns and clause guards out of scope.

Discard patterns are wildcard patterns. Variable patterns are like discard patterns but
bind the value of the discriminant to the variable name assigned so the value can be used in
the corresponding clause. An example of constructor patterns is seen in Listing 2.1. There
we match on the different constructors of Color. Of list patterns we use only a subset, we
match an empty list or a list with a head and a tail. See the last pattern in Listing 3.2 for an
example. There we also see a variable pattern used to bind the head of the list to x.

21

https://github.com/Harmful-Alchemist/gleam/tree/decision_trees_dedup

CaseExpr ::= CaseExpr (type: Type , subjects: Expression +,
clauses: Clause +)

Clause ::= Clause (main: MultiPattern , alt: MultiPattern *,
guard: ClauseGuard , then: Expression)

MultiPattern ::= MultiPattern (patterns: Pattern +)

Pattern ::= IntPattern
| FloatPattern
| StringPattern
| VariablePattern
| VarUsagePattern
| AssignPattern
| DiscardPattern
| ListPattern
| ConstructorPattern
| TuplePattern
| BitArrayPattern
| StringPrefixPattern

Listing 4.1: Gleam pattern matching syntax

The grammar in Listing 4.2 is a short-hand to represent the implementation in the mod-
ified compiler. Based on Baudon, Gonnord, and Radanne [2022] we keep track of not just
the actions but also the subjects so when we need a sub-expression we have the intermedi-
ate representation of that sub-expression available. We also keep track of the environment
so bindings to variables can be generated in the action when generating the outputted
code.

Pattern Matrix ::= PatternMatrix (subjects: Expression *,
pattern_rows: MultiPattern *,
actions_with_environment: ActionEnvironment *)

ActionEnvironment ::= ActionEnvironment (action: Expression *,
bindings: Binding *)

Binding ::= Binding (name: String , value: Expression *)

Listing 4.2: Clause matrix syntax

Based on the clause matrices we generate decision trees with the syntax from Listing 4.3.
Here again each expression corresponds to a new enum or struct in the compilers code. We
do not use or nodes in our tree (see Section 2.3), when generating the clause matrix we
generate additional rows for alternatives. Columns to create the new clause matrix when
generating the tree are selected with the heuristics fdb or the heuristic qba depending on a
feature flag when compiling the modified Gleam compiler.

22

DecisionTree ::= Unreachable
| Success (branch: Expression , bindings: Binding *)
| Switch (discriminant: Expression , cases: CaseTree +)

CaseTree ::= CaseTree (case: Case , tree: DecisionTree)

Case ::= ConstructorEq
| List
| EmptyList
| Default

ConstructorEq ::= ConstructorEq (name: String)

Listing 4.3: Decision tree syntax

4.2. TRANSLATING DECISION TREES TO JAVASCRIPT
JavaScript has no built-in facilities for pattern matching. The code of Listing 2.1 is straight-
forwardly translated to Listing 4.4 by the unmodified Gleam compiler. We expect we can
improve the performance of the generated code by using decision trees.

// generated using: cargo run -- build --target=js
export function t(x, y, z) {

if (y instanceof Red && z instanceof Black) {
return 1;

} else if (x instanceof Red && y instanceof Black) {
return 2;

} else if (z instanceof Red) {
return 3;

} else {
return 4;

}
}

Listing 4.4: Standard Gleam compiler output

4.2.1. GENERATING JAVASCRIPT OUTPUT
With a transformed tree based on the grammar from Section 4.1, we can move to the next
step in the compiler pipeline: code generation, the Gleam compilers backend. For more
details on the Gleam compiler and the compiler pipeline see Section 3.2.

When generating the JavaScript code for each tree we mostly use the existing function-
ality of the Gleam compiler. Recall the structure of decision trees from Section 2 and their
representation in the AST from Section 4.1. For Success nodes we make no changes to the
generation of JavaScript. For each Switch node we generate if/else-if/else statements for
each case.

Taking as our starting point Listing 2.1, the regular unmodified Gleam compiler pro-

23

duces Listing 4.4. Our modified Gleam compiler (using the fdb heuristics) produces Listing
4.5

// generated using: cargo run --features=decisiontree -- build \
// --target=js
export function t(x, y, z) {

if (z instanceof Black) {
if (y instanceof Red) {

return 1;
} else {

if (x instanceof Red) {
return 2;

} else {
return 4;

}
}

} else {
if (y instanceof Black) {

if (x instanceof Red) {
return 2;

} else {
return 3;

}
} else {

return 3;
}

}
}

Listing 4.5: Output based on a decision tree

This way of translating decision trees to JavaScript does lead to code duplication when
the decision tree has duplicated subtrees.

4.2.2. DEDUPLICATING DECISION TREES
The size of the generated JavaScript code can be reduced by outputting the generated code
for each unique decision subtree only once. To only keep track of unique decision sub-
trees we derive or implement the Hashable trait for each enum or struct in the Rust code
that represents a expression in our grammar. We can then use these expressions as keys
in a hashmap. The values will be a unique number, that can be used as a label, for each
(sub)tree.

We generate trees with a recursive algorithm. Success nodes, see Listing 4.3, will be
inserted into the hashmap first and the last node inserted will be the starting node. This
way each subtree will only occur in the map once. This approach is inspired by Filliâtre
and Conchon [2006]. We then change the way the entire tree is represented in JavaScript
instead of nested if-else statements we loop over a switch where each subtree is a case. A

24

variable outside of the loop(sub_tree_label) points to the current node in the tree. The
loop label is numbered to account for nested pattern matched in the body of the actions of
the original Gleam code. See Listing 4.6 for an example.

This is an attempt at working around JavaScripts lack of a goto construct. This way
of achieving deduplicated output does lead to unintuitive and somewhat overly verbose
output. Since we need continue and break statements the reduction in output size is
limited.

This functionality can be turned off and on by using a feature flag when compiling the
modified Gleam compiler.

// generated using: cargo run --features=decisiontree_switch -- build \
// --target=js
export function t(x, y, z) {

let sub_tree_label0 = 9;
pmloop0: while (sub_tree_label0) {

switch (sub_tree_label0) {
case 9: if (z instanceof Black) {

sub_tree_label0 = 5;
continue pmloop0;

} else {
sub_tree_label0 = 8;
continue pmloop0;

}
case 8: if (y instanceof Black) {

sub_tree_label0 = 7;
continue pmloop0;

} else {
sub_tree_label0 = 6;
continue pmloop0;

}
case 7: if (x instanceof Red) {

sub_tree_label0 = 2;
continue pmloop0;

} else {
sub_tree_label0 = 6;
continue pmloop0;

}
case 6:

{
return 3;

}
break pmloop0;

case 5: if (y instanceof Red) {
sub_tree_label0 = 1;
continue pmloop0;

} else {
sub_tree_label0 = 4;

25

continue pmloop0;
}
case 4: if (x instanceof Red) {

sub_tree_label0 = 2;
continue pmloop0;

} else {
sub_tree_label0 = 3;
continue pmloop0;

}
case 3:

{
return 4;

}
break pmloop0;

case 2:
{

return 2;
}
break pmloop0;

case 1:
{

return 1;
}
break pmloop0;

}
}

}

Listing 4.6: Deduplicated decision tree output

26

5
PERFORMANCE OF DECISION TREES FOR

GLEAM

The ultimate goal of using decision trees is code that executes faster, when it contains pat-
tern matches. In this section we verify whether decision trees result in faster code and
compare the output size. It can be quite complicated to provide performance measure-
ments. Due to variance between different executions and different operating systems and
hardware having an influence [Maranget 2008]. The measurements vary between execu-
tions.

To exclude a specific JavaScript engine making the performance difference we test using
V8, SpiderMonkey and Bun.

V8 The V8 JavaScript engine is widely used to execute JavaScript, for example in the Chrome
browser [Google 2024].

SpiderMonkey The SpiderMonkey JavaScript engine is used in the Firefox browser [Mozilla
2024b]. SpiderMonkey was built using the instructions from Mozilla [2024a] and us-
ing its example configuration from an optimized build.

Bun Bun is a JavaScript all-in-one toolkit using the JavaScriptCore JavaScript engine. JavaScript-
Core is used in the Safari browser [Bun 2024].

We add the code in Listing 5.1 to the end of the generated JavaScript and execute that file
using V8, SpiderMonkey or Bun. performance.now() will return the time in milliseconds
as a floating point number with up to microsecond precision [MDN 2024]. We execute
a single warm-up run, to allow the JavaScript engine to optimize the code and disregard
start-up costs.

All tests are run on an intel i7-1165G7 CPU with 4 cores running at 2.80GHz with hyper
threading turned off using Ubuntu 24.04.

27

let min = 10000000000000000000000000;
let max = 0;
let avgs = [];
let warm_up;
let result;
for (var i = 0; i < 100; i++) {

const start = performance.now();
result = main();
const end = performance.now();
const time = end - start;
if (i===0) {warm_up = time; continue;}
avgs.push(time);
if (time < min) min = time;
if (time > max) max = time;

}
console.log(`${avgs.reduce((acc,x) => acc+x,0)/avgs.length},${min},${max},${warm_up}`);

Listing 5.1: Performance measuring code

5.1. BALANCING RED-BLACK TREES
Based on the example of complicated pattern matching in Baudon, Gonnord, and Radanne
[2022], we use the Gleam program in Listing A.1 for testing the performance of the gener-
ated code using decision trees. This leads to the result as reported in Figure 5.1. The error
bars show the minimal and maximum runtime of the generated code. Table 5.1 shows the
same results, notice how the maximum measurements are not shown in the figure.

Figure 5.1: Generated JavaScript code performance for V8, SpiderMonkey and Bun and length for balancing
red-black trees

5.2. SORTING WITH BUBBLE SORT
The second algorithm we use to test the performance of decision trees is bubble sort. By
itself this is not a very efficient algorithm but it can be implemented using a large number

28

JS engine Program Warm-up Average Minimum Maximum

V8

regular 2514.00 278.12 186.00 1024.00
tree with fdb 2996.00 274.48 186.00 1137.00
tree with qba 3035.00 269.05 178.00 1086.00
deduplicated tree with fdb 2468.00 270.89 192.00 892.00
deduplicated tree with qba 2432.00 262.69 190.00 926.00

SpiderMonkey

regular 1849.85 238.72 114.99 1484.86
tree with fdb 1985.11 236.80 110.11 1656.98
tree with qba 1925.05 236.90 109.86 1634.03
deduplicated tree with fdb 2215.82 224.95 110.11 1182.86
deduplicated tree with qba 1970.95 232.42 116.94 1311.04

Bun

regular 6364.42 251.23 154.77 715.32
tree with fdb 6426.61 252.62 162.95 1015.01
tree with qba 6605.37 254.79 165.82 1114.49
deduplicated tree with fdb 5934.37 257.87 170.25 1532.75
deduplicated tree with qba 6089.29 256.36 160.07 578.01

Table 5.1: Balancing red-black trees performance measurements in microseconds

of pattern matches. Therefore bubble sorting is a good candidate when testing the perfor-
mance of compiled pattern matches. See Listing B.1 for the implementation and Figure 5.2
for the results. Table 5.2 shows the same results. Notice that this example ran in millisec-
onds as opposed to microseconds in the previous section.

Figure 5.2: Generated JavaScript code performance for V8, SpiderMonkey and Bun and length for bubble sort

29

JS engine Program Warm-up Average Minimum Maximum

V8

regular 398.91 364.01 333.11 399.17
tree with fdb 385.00 355.77 331.80 375.85
tree with qba 400.66 364.46 338.79 391.18
deduplicated tree with fdb 400.94 374.65 334.24 414.15
deduplicated tree with qba 400.88 376.59 349.26 423.20

SpiderMonkey

regular 496.11 476.03 453.40 515.57
tree with fdb 450.01 445.90 431.00 497.73
tree with qba 448.22 445.58 425.31 473.84
deduplicated tree with fdb 519.40 506.77 483.80 552.36
deduplicated tree with qba 536.79 523.51 499.11 570.41

Bun

regular 281.66 198.49 177.66 230.77
tree with fdb 285.23 198.23 180.41 224.32
tree with qba 286.35 205.47 183.72 240.77
deduplicated tree with fdb 293.37 207.51 188.66 237.93
deduplicated tree with qba 315.29 230.05 201.27 269.41

Table 5.2: Bubble sort performance measurements in milliseconds

30

6
CONCLUSIONS

To conclude this thesis we will answer the research question What is the impact of imple-
menting decision trees in the Gleam compiler on the performance and size of generated Ja-
vaScript code? In all cases decision trees increase the size of the outputted JavaScript code.
The attempts at deduplicating the decision trees can counterintuitively increase the size
of generated JavaScript code even more as seen in Figure 5.2. The outputted code, on av-
erage, never performs significantly faster than the naive translation done by the original
Gleam compiler.

On balance we conclude that decision trees are not a good fit for the Gleam compiler.
The performance is disappointing. Since there is no general increase in performance for
the JavaScript output it seems like there would be no performance improvement when us-
ing the technique for Erlang output, since the Erlang already optimizes pattern matches.
An increase in performance could justify the work necessary to implement decision trees
for clause guards and all pattern matches possible in Gleam, but now this justification is
absent.

6.1. DISCUSSION
Unclear is why the implemented decision trees do not significantly increase the speed.
There are no obvious deficiencies in the generated JavaScript code. We have manually
compared the generated decision trees to what is expected using the generation process
seen in Chapter 2. The output of the generated JavaScript program is the same, whether it
is compiled using decision trees or not. The lack of a goto statement in JavaScript makes
reducing the size of the output very difficult, attempts to work around that lack result in a
lot of code being generated to replace it.

Flamegraphs generated by the V8 JavaScript engine do not show clear differences when
executing the code generated using decision trees versus using the originally generated
JavaScript code. See Figure 6.1 for an example of a flamegraph of a single run. There is
some variance between runs. The small differences shown are thus not an essential dif-
ference. The graphs show a small parsing step and then a call-out to C++ functionality.
Unfortunately making it unclear whether the V8 engine uses heuristics that can speed up
the original JavaScript code but not the less standard code generated using decision trees.

31

Unmodified Gleam compiler

Using fdb

Using fdb and deduplicated

Figure 6.1: Generated JavaScript code performance for the regular Gleam compiler output, decision trees
with the fdb heuristic and the deduplicated decision trees

The balancing of red black trees was perhaps not the best choice of algorithm for mea-
suring performance. It might be too fast a sample, resulting in very large differences be-
tween the average run time and the sometimes seen much slower run times.

SpiderMonkey perhaps uses different optimizations, explaining the slight increase in
performance. To really increase the speed of JavaScript code generated by the Gleam com-
piler a better approach would be researching what optimizations the different JavaScript
runtimes make. Comparing that to the JavaScript code the Gleam compiler generates and
finding places where optimizable patterns might be generated. Perhaps even targeting spe-
cific JavaScript runtimes. The trade-off there would be that the optimizations could change
when new JavaScript runtime versions are released. The resulting JavaScript code would
become less readable than the non-optimized version and after an optimization change
possibly not even faster anymore.

6.2. FUTURE WORK
We have shown decision trees do, in general, not increase the speed of the JavaScript output
of the Gleam compiler. What remains unclear however is why exactly that is. Since this
result is somewhat counter-intuitive it would be a good idea to research why this is the
case. If a way is found to improve the performance of decision trees in Gleam based on the
reason why the trees currently do not perform well it could be worthwhile to increase the
number of patterns the current implementation handles. Incorporate clause guards into
the trees and research whether the performance of the Erlang output could be improved as
well.

32

ACKNOWLEDGMENTS

Many thanks and credit to Milco Kats for writing Section 3.1 together for an earlier version
of what was then our thesis.

33

A
BALANCING RED-BLACK TREES CODE

Random generation of red black trees as Gleam code is done by a small Python script. All
trees have a depth of two, since the the Gleam code only balances the root node. We use
a custom map function since importing it from Gleam’s standard library would mean that
standard library code would be compiled with the modified compiler too, and we want our
performance tests to be isolated to just our code.

pub fn main() {
let cases = [

#(
Red,
1,
Node(Black, 1, Node(Black, 1, Empty, Empty), Node(Black, 3, Empty, Empty)),
Node(Red, 1, Node(Black, 2, Empty, Empty), Node(Red, 3, Empty, Empty)),

),
// .. 50 more randomly generated trees,

]

map(cases, balance_tuple)
}

pub type Color {
Red
Black

}

pub type RBT(t) {
Node(Color, t, RBT(t), RBT(t))
Empty

}

fn balance(c, v, t1, t2) {
case c, v, t1, t2 {

Black, z, Node(Red, y, Node(Red, x, a, b), c), d

34

| Black, z, Node(Red, x, a, Node(Red, y, b, c)), d
| Black, x, a, Node(Red, z, Node(Red, y, b, c), d)
| Black, x, a, Node(Red, y, b, Node(Red, z, c, d)) ->

Node(Red, y, Node(Black, x, a, b), Node(Black, z, c, d))
a, b, c, d -> Node(a, b, c, d)

}
}

fn balance_tuple(x: #(Color, t, RBT(t), RBT(t))) {
balance(x.0, x.1, x.2, x.3)

}

fn map(xs, f) {
map_acc(xs, f, [])

}

fn map_acc(xs, f, acc) {
case xs {

[] -> acc
[x, ..ys] -> map_acc(ys, f, [f(x), ..acc])

}
}

Listing A.1: Gleam and a complicated pattern match

35

B
BUBBLE SORT CODE

Random generation of numbers as Gleam code is done by a small Python script. We use
our own definition of numbers both to have more executions of pattern matches and since
we did implement pattern matches on numbers. This last point is true for boolean pattern
matches too, so we implemented our own.

pub fn main() {
sort([

// 1.000 randomly generated numbers in the range of 0 to 50.
])

}

pub type Number {
Zero
S(Number)

}

fn smaller(x, y) {
case x, y {

Zero, S(_) -> Tr
S(nx), S(ny) -> smaller(nx, ny)
_, Zero -> Fa

}
}

fn lenght(xs) {
case xs {

[] -> Zero
[x, ..ys] -> S(lenght(ys))

}
}

fn sort(elements) {
case elements {

36

[] -> []
[x, ..xs] -> {

let len = lenght(xs)
sort_inner(x, xs, [], len, [])

}
}

}

type MyBool {
Tr
Fa

}

fn sort_inner(element_to_cmp, elements, acc, len, real_acc) {
case element_to_cmp, elements, len, acc {

x, [y, ..ys], _, lacc -> {
let comp = smaller(x,y)
case comp {

Tr -> sort_inner(x, ys, [y, ..lacc], len, real_acc)
Fa -> sort_inner(y, ys, [x, ..lacc], len, real_acc)

}
}

x, [], S(a), [ac, ..accs] -> {
sort_inner(ac, accs, [], a, [x, ..real_acc])}

x, [], _, _ -> [x, ..real_acc]
}

}

Listing B.1: Gleam sorting using pattern matching

37

C
EXCLUDING ERLANG

In this section we explain why we do not implement decision trees for Erlang output. With
just the JavaScript output we can already test whether decision trees are a promising way
for increasing the performance of pattern matching in Gleam.

The Erlang compiler generates bytecode for the BEAM virtual machine. The BEAM is
a register machine. It already generates code for efficient pattern matching [Armstrong
2007]. We did not discover the precise details of these optimizations, so it is unclear to us
whether the Erlang compiler has functionality similar to decision trees and what heuristics
(see Section 2.5) it would use. We did not observe the bytecode we would expect if decision
trees were used.

We can however show one of these optimizations by taking the Gleam code in Listing
C.1, seeing the Erlang code it generates in Listing C.2 and finally looking at the bytecode
the Erlang compiler generates in Listing C.3

pub type Color {
Red
Black
Purple
Pink

}

pub fn t(x: Color,y: Color,z: Color) {
case x, y, z {

_, Red, Black -> 1
Red, Black, _ -> 2
_, _, Red -> 3
_, _, Black -> 4
,, Purple -> 5
_, _, Pink -> 6

}
}

Listing C.1: Pattern matching on many constructors in Gleam

38

Listing C.2 shows the generated Erlang output. Erlang is a dynamically typed language,
but programmers can optionally provide type information. We see this in the type color(),
which has the variants red, black etc. These variants are known as atoms in Erlang. An
atom is a constant with a name, also known as a literal [Ericsson AB 2024]. The t function
takes three colors and returns an integer as seen in its spec or specification. The pattern
match is almost identical to the one in the Gleam source code, besides some minor syntac-
tic differences like braces surrounding the patterns.

-type color() :: red | black | purple | pink.

-spec t(color(), color(), color()) -> integer().
t(X, Y, Z) ->

case {X, Y, Z} of
{_, red, black} ->

1;

{red, black, _} ->
2;

{_, _, red} ->
3;

{_, _, black} ->
4;

{_, _, purple} ->
5;

{_, _, pink} ->
6

end.

Listing C.2: Erlang code generated by the Gleam compiler

To illustrate some of Erlangs optimizations we need to understand some of the bytecode
instructions. In our example we will only use the x registers, they are used for temporary
data, passing data between functions and do not require a stack frame. Function argu-
ments are placed in the registers and the first argument can be referred to like this: {x,
0}, the second as {x, 1} and so on. Return values are also placed in x registers. We will
explain the following instructions:
function
label
f or fail
test
return
move
select_val

39

The function instruction looks like this: {function <name>, <arity>, <labelNumber>
}, where name is the name of the function, arity is the arity of the function and labelNumber
is a generated entry label for the function. The {label, <labelNumber>} instruction de-
fines a label. Using the {f, <labelNumber>} instruction we can define a fail label to jump
to a label in case of failure. Failures can happen when a test instruction results in a failure.

Test instructions look like this: {test,<testName>, <failureLabel>, [<value>,
<comparator>]}. A relevant example is {test,is_eq_exact,f,6,[x,0,atom,red]}, here
if the value in the 0th x register, is not exactly equal to the atom red the virtual machine will
jump to label 6, based on the f instruction. The return instruction returns from a function.
The move instruction moves a value to a register.

The select_val instruction compares a value to a list of values and jumps to the asso-
ciated label or if no values match it to the failure label specified. So {select_val, {x,2},
{f,9}, {list, [{atom,black}, {f,8}, {atom,red}, f,7]}} will result in a jump to
label 8 if the value in register 2 is the atom black, label 7 if the atom is red and to label 9 if it
is neither.

{function, t, 3, 2}.
{label,1}.

{line,[{location,"test_small.erl",10}]}.
{func_info,{atom,test_small},{atom,t},3}.

{label,2}.
{test,is_eq_exact,{f,3},[{x,1},{atom,red}]}.
{test,is_eq_exact,{f,3},[{x,2},{atom,black}]}.
{move,{integer,1},{x,0}}.
return.

{label,3}.
{test,is_eq_exact,{f,4},[{x,0},{atom,red}]}.
{test,is_eq_exact,{f,4},[{x,1},{atom,black}]}.
{move,{integer,2},{x,0}}.
return.

{label,4}.
{select_val,{x,2},

{f,9},
{list,[{atom,black},

{f,8},
{atom,pink},
{f,7},
{atom,purple},
{f,6},
{atom,red},
{f,5}]}}.

{label,5}.
{move,{integer,3},{x,0}}.
return.

{label,6}.
{move,{integer,5},{x,0}}.
return.

40

{label,7}.
{move,{integer,6},{x,0}}.
return.

{label,8}.
{move,{integer,4},{x,0}}.
return.

{label,9}.
{test_heap,4,3}.
{put_tuple2,{x,0},{list,[{x,0},{x,1},{x,2}]}}.
{line,[{location,"test_small.erl",11}]}.
{case_end,{x,0}}.

Listing C.3: Produced BEAM bytecode for funtion t

There are also some instructions that are not relevant to understanding the following
example, the line and func_info instructions are used in error handling in the BEAM
and not relevant for pattern match optimizations. The final label 9 in Listing C.3 is there
for runtime errors, since pattern matches do not have to be exhaustive in Erlang there is
always a final case generated in case no clauses match [Högberg 2024].

We can see a small example of Erlangs optimizations by compiling the code from Listing
C.1, that produces the assembly shown in Listing C.3. This shows that Erlang uses instruc-
tions like select_val to avoid repeated tests of the same value. These are control flow
constructs we do not have access to in JavaScript. Erlangs select_val optimization is at
the byte code level and shows what the BEAM will execute. JavaScript does have a switch
construct, which might execute similarly to the select_val statement but this will depend
on the JavaScript runtime. The Erlang compiler will also inline values where the t function
is called with known colors. It is possible the JavaScript runtime will do similar things but
there are no guarantees. We have not found any evidence of the Erlang compiler using
heuristics similar to the ones found in Section 2.5. Since the Erlang compiler already opti-
mizes pattern matches we do not expect as large a gain in performance using decision trees
compared to the JavaScript output where no optimizations are used at all.

41

BIBLIOGRAPHY

Aho, Alfred V. et al. (2007). Compilers: principles, techniques, & tools. 2nd ed. Pearson/Ad-
dison Wesley. ISBN: 9780133002140.

Armstrong, Joe (2007). “A history of Erlang”. In: Proceedings of the third ACM SIGPLAN con-
ference on History of programming languages, pp. 6–1.

Baudon, Thaïs, Laure Gonnord, and Gabriel Radanne (2022). “Knit&Frog: Pattern matching
compilation for custom memory representations”. PhD thesis. Inria Lyon.

Bun (2024). Bun website. URL: https://bun.sh/ (visited on 11/02/2024).
Ericsson AB (2024). Erlang. URL: https://www.erlang.org/doc/system/data_types.

html (visited on 11/02/2024).
Filliâtre, Jean-Christophe and Sylvain Conchon (2006). “Type-safe modular hash-consing”.

In: Proceedings of the 2006 Workshop on ML, pp. 12–19.
Gleam contributors (2024). Gleam Language Tour. URL: https : / / tour . gleam . run /

table-of-contents/ (visited on 04/04/2024).
Google (2024). V8 website. URL: https://v8.dev/ (visited on 10/26/2024).
Högberg, John (2024). A brief introduction to BEAM. URL: https://www.erlang.org/

blog/a-brief-beam-primer/ (visited on 10/26/2024).
Maranget, Luc (2008). “Compiling pattern matching to good decision trees”. In: Proceedings

of the 2008 ACM SIGPLAN workshop on ML, pp. 35–46.
MDN (2024). Performance.now() method. URL: https://developer.mozilla.org/en-

US/docs/Web/API/Performance/now (visited on 11/02/2024).
Medeiros Santos, Andre Luis de (1995). Compilation by transformation in non-strict func-

tional languages. University of Glasgow (United Kingdom).
Mozilla (2024a). URL: https://firefox-source-docs.mozilla.org/js/build.html

(visited on 11/03/2024).
— (2024b). SpiderMonkey website. URL: https://spidermonkey.dev/ (visited on 10/26/2024).
Nystrom, Robert (2021). Crafting interpreters. Genever Benning.
Peyton Jones, Simon L. and AndréL.M. Santos (1998). “A transformation-based optimiser

for Haskell”. In: Science of Computer Programming 32.1. 6th European Symposium on
Programming, pp. 3–47. ISSN: 0167-6423. DOI: https://doi.org/10.1016/S0167-
6423(97)00029- 4. URL: https://www.sciencedirect.com/science/article/
pii/S0167642397000294.

The Gleam team (2024). Gleam. URL: https://gleam.run/ (visited on 01/28/2024).

42

https://bun.sh/
https://www.erlang.org/doc/system/data_types.html
https://www.erlang.org/doc/system/data_types.html
https://tour.gleam.run/table-of-contents/
https://tour.gleam.run/table-of-contents/
https://v8.dev/
https://www.erlang.org/blog/a-brief-beam-primer/
https://www.erlang.org/blog/a-brief-beam-primer/
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://firefox-source-docs.mozilla.org/js/build.html
https://spidermonkey.dev/
https://doi.org/https://doi.org/10.1016/S0167-6423(97)00029-4
https://doi.org/https://doi.org/10.1016/S0167-6423(97)00029-4
https://www.sciencedirect.com/science/article/pii/S0167642397000294
https://www.sciencedirect.com/science/article/pii/S0167642397000294
https://gleam.run/

	Gleam, decision trees and optimization
	Introduction
	Contributions
	Structure
	Related work

	Decision trees
	Pattern matching
	Clause matrices
	Decision trees
	Generating decision trees
	Optimizing decision trees
	Sharing sub trees

	Gleam and its compiler
	Gleam
	Compilers
	Abstract syntax trees
	Specifying ASTs

	Implementing decision trees in the Gleam compiler
	Transforming the ast
	Translating decision trees to JavaScript
	Generating JavaScript output
	Deduplicating decision trees

	Performance of decision trees for Gleam
	Balancing Red-black trees
	Sorting with bubble sort

	Conclusions
	Discussion
	Future work

	Balancing red-black trees code
	Bubble sort code
	Excluding Erlang

